This material assumes that you have programmed before. This first lecture provides a quick introduction to programming in Python for those who either haven't used Python before or need a quick refresher.
Let's start with a hypothetical problem we want to solve. We are interested in understanding the relationship between the weather and the number of mosquitos occuring in a particular year so that we can plan mosquito control measures accordingly. Since we want to apply these mosquito control measures at a number of different sites we need to understand both the relationship at a particular site and whether or not it is consistent across sites. The data we have to address this problem comes from the local government and are stored in tables in comma-separated values (CSV) files. Each file holds the data for a single location, each row holds the information for a single year at that location, and the columns hold the data on both mosquito numbers and the average temperature and rainfall from the beginning of mosquito breeding season. The first few rows of our first file look like:
year,temperature,rainfall,mosquitos
2001,87,222,198
2002,72,103,105
2003,77,176,166
In order to load the data, we need to import a library called Pandas that knows how to operate on tables of data.
import pandas
We can now use Pandas to read our data file.
pandas.read_csv('mosquito_data_A1.csv')
year temperature rainfall mosquitos
0 2001 87 222 198
1 2002 72 103 105
2 2003 77 176 166
3 2004 89 236 210
4 2005 88 283 242
5 2006 89 151 147
6 2007 71 121 117
7 2008 88 267 232
8 2009 85 211 191
9 2010 75 101 106
The read_csv()
function belongs to the pandas
library. In order to run it we need to tell Python that it is part of pandas
and we do this using the dot notation, which is used everywhere in Python to refer to parts of larger things.
When we are finished typing and press Shift+Enter, the notebook runs our command and shows us its output. In this case, the output is the data we just loaded.
Our call to pandas.read_csv()
read data into memory, but didn't save it anywhere. To do that, we need to assign the array to a variable. In Python we use =
to assign a new value to a variable like this:
data = pandas.read_csv('mosquito_data_A1.csv')
This statement doesn't produce any output because assignment doesn't display anything. If we want to check that our data has been loaded, we can print the variable's value:
print data
year temperature rainfall mosquitos
0 2001 87 222 198
1 2002 72 103 105
2 2003 77 176 166
3 2004 89 236 210
4 2005 88 283 242
5 2006 89 151 147
6 2007 71 121 117
7 2008 88 267 232
8 2009 85 211 191
9 2010 75 101 106
print data
tells Python to display the text. Alternatively we could just include data
as the last value in a code cell:
data
year temperature rainfall mosquitos
0 2001 87 222 198
1 2002 72 103 105
2 2003 77 176 166
3 2004 89 236 210
4 2005 88 283 242
5 2006 89 151 147
6 2007 71 121 117
7 2008 88 267 232
8 2009 85 211 191
9 2010 75 101 106
This tells the IPython Notebook to display the data
object, which is why we see a pretty formated table.
Once we have imported the data we can start doing things with it. First, let's ask what type of thing data
refers to:
print type(data)
<class 'pandas.core.frame.DataFrame'>
The data is stored in a data structure called a DataFrame. There are other kinds of data structures that are also commonly used in scientific computing including Numpy arrays, and Numpy matrices, which can be used for doing linear algebra.
We can select an individual column of data using its name:
print data['year']
0 2001
1 2002
2 2003
3 2004
4 2005
5 2006
6 2007
7 2008
8 2009
9 2010
Name: year, dtype: int64
Or we can select several columns of data at once:
print data[['rainfall', 'temperature']]
rainfall temperature
0 222 87
1 103 72
2 176 77
3 236 89
4 283 88
5 151 89
6 121 71
7 267 88
8 211 85
9 101 75
We can also select subsets of rows using slicing. Say we just want the first two rows of data:
print data[0:2]
year temperature rainfall mosquitos
0 2001 87 222 198
1 2002 72 103 105
There are a couple of important things to note here. First, Python indexing starts at zero. In contrast, programming languages like R and MATLAB start counting at 1, because that's what human beings have done for thousands of years. Languages in the C family (including C++, Java, Perl, and Python) count from 0 because that's simpler for computers to do. This means that if we have 5 things in Python they are numbered 0, 1, 2, 3, 4, and the first row in a data frame is always row 0.
The other thing to note is that the subset of rows starts at the first value and goes up to, but does not include, the second value. Again, the up-to-but-not-including takes a bit of getting used to, but the rule is that the difference between the upper and lower bounds is the number of values in the slice.
One thing that we can't do with this syntax is directly ask for the data from a single row:
data[1]
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
<ipython-input-10-c805864c0d75> in <module>()
----> 1 data[1]
/usr/lib/python2.7/dist-packages/pandas/core/frame.pyc in __getitem__(self, key)
2001 # get column
2002 if self.columns.is_unique:
-> 2003 return self._get_item_cache(key)
2004
2005 # duplicate columns
/usr/lib/python2.7/dist-packages/pandas/core/generic.pyc in _get_item_cache(self, item)
665 return cache[item]
666 except Exception:
--> 667 values = self._data.get(item)
668 res = self._box_item_values(item, values)
669 cache[item] = res
/usr/lib/python2.7/dist-packages/pandas/core/internals.pyc in get(self, item)
1653 def get(self, item):
1654 if self.items.is_unique:
-> 1655 _, block = self._find_block(item)
1656 return block.get(item)
1657 else:
/usr/lib/python2.7/dist-packages/pandas/core/internals.pyc in _find_block(self, item)
1933
1934 def _find_block(self, item):
-> 1935 self._check_have(item)
1936 for i, block in enumerate(self.blocks):
1937 if item in block:
/usr/lib/python2.7/dist-packages/pandas/core/internals.pyc in _check_have(self, item)
1940 def _check_have(self, item):
1941 if item not in self.items:
-> 1942 raise KeyError('no item named %s' % com.pprint_thing(item))
1943
1944 def reindex_axis(self, new_axis, method=None, axis=0, copy=True):
KeyError: u'no item named 1'
This is because there are several things that we could mean by data[1]
so if we want a single row we can either take a slice that returns a single row:
print data[1:2]
year temperature rainfall mosquitos
1 2002 72 103 105
or use the .iloc
method, which stands for "integer location" since we are looking up the row based on its integer index.
print data.iloc[1]
year 2002
temperature 72
rainfall 103
mosquitos 105
Name: 1, dtype: int64
We can also use this same syntax for getting larger subsets of rows:
print data.iloc[1:3]
year temperature rainfall mosquitos
1 2002 72 103 105
2 2003 77 176 166
We can also subset the data based on the value of other rows:
print data['temperature'][data['year'] > 2005]
5 89
6 71
7 88
8 85
9 75
Name: temperature, dtype: int64
Data frames also know how to perform common mathematical operations on their values. If we want to find the average value for each variable, we can just ask the data frame for its mean values
print data.mean()
year 2005.5
temperature 82.1
rainfall 187.1
mosquitos 171.4
dtype: float64
Data frames have lots of useful methods:
print data.max()
year 2010
temperature 89
rainfall 283
mosquitos 242
dtype: int64
print data['temperature'].min()
71
print data['mosquitos'][1:3].std()
43.1335136524
Import the data from mosquito_data_A2.csv
, create a new variable that holds a data frame with only the weather data, and print the means and standard deviations for the weather variables.
Once we have some data we often want to be able to loop over it to perform the same operation repeatedly.
A for
loop in Python takes the general form
for item in list:
do_something
So if we want to loop over the temperatures and print out there values in degrees Celcius (instead of Farenheit) we can use:
temps = data['temperature']
for temp_in_f in temps:
temp_in_c = (temp_in_f - 32) * 5 / 9.0
print temp_in_c
30.5555555556
22.2222222222
25.0
31.6666666667
31.1111111111
31.6666666667
21.6666666667
31.1111111111
29.4444444444
23.8888888889
That looks good, but why did we use 9.0 instead of 9? The reason is that computers store integers and numbers with decimals as different types: integers and floating point numbers (or floats). Addition, subtraction and multiplication work on both as we'd expect, but division works differently. If we divide one integer by another, we get the quotient without the remainder:
print '10/3 is:', 10 / 3
10/3 is: 3
If either part of the division is a float, on the other hand, the computer creates a floating-point answer:
print '10/3.0 is:', 10 / 3.0
10/3.0 is: 3.33333333333
The computer does this for historical reasons: integer operations were much faster on early machines, and this behavior is actually useful in a lot of situations. However, it's still confusing, so Python 3 produces a floating-point answer when dividing integers if it needs to. We're still using Python 2.7 in this class, so if we want 5/9 to give us the right answer, we have to write it as 5.0/9, 5/9.0, or some other variation.
The other standard thing we need to know how to do in Python is conditionals, or if/then/else statements. In Python the basic syntax is:
if condition:
do_something
So if we want to loop over the temperatures and print out only those temperatures that are greater than 80 degrees we would use:
temp = data['temperature'][0]
if temp > 80:
print "The temperature is greater than 80"
The temperature is greater than 80
We can also use ==
for equality, <=
for less than or equal to, >=
for greater than or equal to, and !=
for not equal to.
Additional conditions can be handled using elif
and else
:
temp = data['temperature'][0]
if temp < 87:
print "The temperature is < 87"
elif temp > 87:
print "The temperature is > 87"
else:
print " The temperature is equal to 87"
The temperature is equal to 87
Import the data from mosquito_data_A2.csv
, determine the mean temperate, and loop over the temperature values. For each value print out whether it is greater than the mean, less than the mean, or equal to the mean.
The mathematician Richard Hamming once said, "The purpose of computing is insight, not numbers," and the best way to develop insight is often to visualize data. The main plotting library in Python is matplotlib
. To get started, let's tell the IPython Notebook that we want our plots displayed inline, rather than in a separate viewing window:
%matplotlib inline
The %
at the start of the line signals that this is a command for the notebook, rather than a statement in Python. Next, we will import the pyplot
module from matplotlib
, but since pyplot
is a fairly long name to type repeatedly let's give it an alias.
from matplotlib import pyplot as plt
This import statement shows two new things. First, we can import part of a library by using the from library import submodule
syntax. Second, we can use a different name to refer to the imported library by using as newname
.
Now, let's make a simple plot showing how the number of mosquitos varies over time. We'll use the site you've been doing exercises with since it has a longer time-series.
data = pandas.read_csv('mosquito_data_A2.csv')
plt.plot(data['year'], data['mosquitos'])
[<matplotlib.lines.Line2D at 0x4a88590>]
More complicated plots can be created by adding a little additional information. Let's say we want to look at how the different weather variables vary over time.
plt.figure(figsize=(10.0, 3.0))
plt.subplot(1, 2, 1)
plt.plot(data['year'], data['temperature'], 'ro-')
plt.xlabel('Year')
plt.ylabel('Temperature')
plt.subplot(1, 2, 2)
plt.plot(data['year'], data['rainfall'], 'bs-')
plt.xlabel('Year')
plt.ylabel('Rain Fall')
plt.show()
Using the data in mosquito_data_A2.csv
plot the relationship between the number of mosquitos and temperature and the number of mosquitos and rainfall.
import libraryname
.pandas
library to work with data tables in Python.variable = value
to assign a value to a variable.print something
to display the value of something
.dataframe['columnname']
to select a column of data.dataframe[start_row:stop_row]
to select rows from a data frame.dataframe.mean()
, dataframe.max()
, and dataframe.min()
to calculate simple statistics.for x in list:
to loop over valuesif condition:
to make conditional decisionspyplot
library from matplotlib
for creating simple visualizations.With the requisite Python background out of the way, now we're ready to dig in to analyzing our data, and along the way learn how to write better code, more efficiently, that is more likely to be correct.